4.7 Article

POLARIZED INFRARED EMISSION BY POLYCYCLIC AROMATIC HYDROCARBONS RESULTING FROM ANISOTROPIC ILLUMINATION

Journal

ASTROPHYSICAL JOURNAL
Volume 698, Issue 2, Pages 1292-1300

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/698/2/1292

Keywords

dust, extinction; infrared: galaxies; ISM: general

Funding

  1. NSF [AST-0406883]

Ask authors/readers for more resources

We study the polarized infrared emission by polycyclic aromatic hydrocarbons (PAHs), when anisotropically illuminated by UV photons. PAH molecules are modeled as planar disks with in-plane and out-of-plane vibrational modes. As first pointed out by Leger, infrared emission features resulting from in-plane and out-of-plane modes should have orthogonal polarization directions. We show analytically how the degree of polarization depends on the viewing geometry and the molecule's internal alignment between principal axis of inertia and angular momentum, which gets worse after photon absorption. Longer wavelength features, emitted after better internal alignment is recovered, should be more strongly polarized. The degree of polarization for unidirectional illumination (e. g., by a star) is larger than for diffuse illumination (e. g., by a disk galaxy), all else being equal. For PAHs in the cold neutral medium, the predicted polarization is probably too small to distinguish from the contribution of linear dichroism by aligned foreground dust. The level of polarization predicted for PAH emission from the Orion Bar is only approximate to 0.06% at 3.3 mu m; Sellgren et al. report a much larger value, 0.86% +/- 0.28%, which suggests that the smallest PAHs may have moderately suprathermal rotation rates. Future observations of (or upper limits on) the degree of polarization for the Orion Bar or for dust above edge-on galaxies (e. g., NGC 891 or M82) may constrain the internal alignment of emitting PAHs, thus providing clues to their rotational dynamics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available