4.6 Article

Laminin 10/11: an alternative adhesive ligand for epidermal keratinocytes with a functional role in promoting proliferation and migration

Journal

EXPERIMENTAL DERMATOLOGY
Volume 11, Issue 5, Pages 387-397

Publisher

WILEY
DOI: 10.1034/j.1600-0625.2002.110501.x

Keywords

epidermis; extracellular matrix; integrin; skin; wound healing

Categories

Ask authors/readers for more resources

We have investigated the expression and function of the isoforms of laminin bearing the alpha(5) chain, i.e. laminin-10/11 in neonatal and adult human skin. By immunostaining human skin derived from a variety of anatomic sites, we found that the laminin-alpha(5) chain is expressed abundantly in the basement membrane underlying the interfollicular epidermis and the blood vessels in the dermis. Interestingly, while the expression level of the well-studied laminin-5 isoform did not change significantly with age, laminin-10/11 (a5 chain) appeared to decrease in the basement membrane underlying the epidermis, in adult skin. In contrast, the levels of laminin-10/11 in the basement membrane underlying blood vessels remained unchanged in neonatal vs. adult skin. Importantly, in vitro cell adhesion assays demonstrated that laminin-10/11 is a potent adhesive substrate for both neonatal and adult keratinocytes and that this adhesion is mediated by the alpha(3)beta(1), and alpha(6)beta(4) integrins. Adhesion assays performed with fractionated basal keratinocytes showed that stem cells, transit amplifying cells and early differentiating cells all adhere to purified laminin-10/11 via these receptors. Further, laminin-10/11 provided a proliferative signal for neonatal foreskin keratinocytes, adult breast skin keratinocytes, and even a human papillomavirus type-18 transformed tumorigenic keratinocyte cell line in vitro. Finally, laminin-10/11 was shown to stimulate keratinocyte migration in an in vitro wound healing assay. These results provide strong evidence for a functional role for laminin-10/11 in epidermal proliferation during homeostasis, wound healing and neoplasia.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available