4.6 Article Proceedings Paper

Seaweeds in cold seas:: Evolution and carbon acquisition

Journal

ANNALS OF BOTANY
Volume 90, Issue 4, Pages 525-536

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/aob/mcf171

Keywords

review; carbon dioxide; Chlorophyta; glaciations; Heterokontophyta; Phaeophyceae; Rhodophyta

Categories

Ask authors/readers for more resources

Much evidence suggests that life originated in hydrothermal habitats, and for much of the time since the origin of cyanobacteria (at least 2.5 Ga ago) and of eukaryotic algae (at least 2.1 Ga ago) the average sea surface and land surface temperatures were higher than they are today. However, there have been at least four significant glacial episodes prior to the Pleistocene glaciations. Two of these (approx. 2.1 and 0.7 Ga ago) may have involved a 'Snowball Earth' with a very great impact on the algae (sensu lato) of the time (cyanobacteria, Chlorophyta and Rhodophyta) and especially those that were adapted to warm habitats, By contrast, it is possible that heterokont, dinophyte and haptophyte phototrophs only evolved after the Carboniferous-Permian ice age (approx. 250 Ma ago) and so did not encounter low (less than or equal to5 degreesC) sea surface temperatures until the Antarctic cooled some 15 Ma ago. Despite this, many of the dominant macroalgae in cooler seas today are (heterokont) brown algae, and many laminarians cannot reproduce at temperatures above 18-25 degreesC. By contrast to plants in the aerial environment, photosynthetic structures in water are at essentially the same temperature as the fluid medium, The impact of low temperatures on photosynthesis by marine macrophytes is predicted to favour diffusive CO2 entry rather than a CO2-concentrating mechanism. Some evidence favours this suggestion, but more data are needed. (C) 2002 Annals of Botany Company.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available