4.7 Article

DETECTING FLARING STRUCTURES IN SAGITTARIUS A* WITH HIGH-FREQUENCY VLBI

Journal

ASTROPHYSICAL JOURNAL
Volume 695, Issue 1, Pages 59-74

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/695/1/59

Keywords

accretion, accretion disks; black hole physics; Galaxy: center; submillimeter; techniques: interferometric

Funding

  1. National Science Foundation

Ask authors/readers for more resources

The super-massive black hole candidate, Sagittarius A*, exhibits variability from radio to X-ray wavelengths on timescales that correspond to < 10 Schwarzschild radii. We survey the potential of millimeter wavelength very long baseline interferometry (VLBI) to detect and constrain time-variable structures that could give rise to such variations, focusing on a model in which an orbiting hot spot is embedded in an accretion disk. Nonimaging algorithms are developed that use interferometric closure quantities to test for periodicity, and applied to an ensemble of hot spot models that sample a range of parameter space. We find that structural periodicity in a wide range of cases can be detected on most potential VLBI arrays using modern VLBI instrumentation. Future enhancements of millimeter/submillimeter VLBI arrays including phased-array processors to aggregate VLBI station collecting area, increased bandwidth recording, and addition of new VLBI sites all significantly aid periodicity detection. The methods described herein can be applied to other models of Sagittarius A*, including jet outflows and magnetohydrodynamic accretion simulations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available