4.7 Article

Skeletal muscle insulin resistance in obesity-associated type 2 diabetes in monkeys is linked to a defect in insulin activation of protein kinase C-ζ/λ/ι

Journal

DIABETES
Volume 51, Issue 10, Pages 2936-2943

Publisher

AMER DIABETES ASSOC
DOI: 10.2337/diabetes.51.10.2936

Keywords

-

Funding

  1. NIDDK NIH HHS [2R01-DK-38079-09A1, R01 DK065969] Funding Source: Medline

Ask authors/readers for more resources

Rhesus monkeys frequently develop obesity and insulin resistance followed by type 2 diabetes when allowed free access to chow. This insulin resistance is partly due to defective glucose transport into skeletal muscle. In this study, we examined signaling factors required for insulin-stimulated glucose transport in muscle biopsies taken during euglycemic-hyperinsulinemic clamps in nondiabetic, obese prediabetic, and diabetic monkeys. Insulin increased activities of insulin receptor substrate (IRS)-1-dependent phosphatidylinositol (PI) 3-kinase and its downstream effectors, atypical protein kinase Cs (aPKCs) (zeta/lambda/iota) and protein kinase B (PKB) in muscles of nondiabetic monkeys. Insulin-induced increases in glucose disposal and aPKC activity diminished progressively in prediabetic and diabetic monkeys. Decreases in aPKC activation appeared to be at least partly due to diminished activation of IRS-1-dependent PI 3-kinase, but direct activation of aPKCs by the PI 3-kinase lipid product PI-3,4,5-(PO4)(3) was also diminished. In conjunction with aPKCs, PKB activation was diminished in prediabetic muscle but, differently from aPKCs, seemed to partially improve in diabetic muscle. interestingly, calorie restriction and avoidance of obesity largely prevented development of defects in glucose disposal and aPKC activation. Our findings suggest that defective activation of aPKCs contributes importantly to obesity-dependent development of skeletal muscle insulin resistance in prediabetic and type 2 diabetic monkeys.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available