4.7 Article

The formation of coronal loops by thermal instability in three dimensions

Journal

ASTROPHYSICAL JOURNAL LETTERS
Volume 679, Issue 2, Pages L161-L165

Publisher

IOP PUBLISHING LTD
DOI: 10.1086/589440

Keywords

Sun : corona; Sun : UV radiation; Sun : X-rays; gamma rays

Ask authors/readers for more resources

Plasma loops in solar active regions have been observed in EUV and soft X-rays for decades. Their formation mechanism and properties, however, are still not fully understood. Predictions by early models, based on 1D hydrostatic equilibria with uniform plasma heating, are not consistent with high-resolution measurements. In this Letter, we demonstrate, via 3D simulations, that a class of heating models can lead to the dynamic formation of plasma loops provided the plasma is heated sufficiently to match SXT soft X-ray measurements. We show that individual flux tubes in a 3D magnetic structure tend to stand out against their neighbors. The loops have large aspect ratios and nearly uniform cross sections in the corona, similar to those observed by EIT and TRACE. The coronal EUV emission from these thermally unstable solutions is roughly consistent with EIT measurements. The solution oscillates in time through a large-amplitude, nonlinear cycle, leading to repeated brightening and fading of the loops.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available