4.7 Article

Mutations in the rpoB and katG genes leading to drug resistance in Mycobacterium tuberculosis in Latvia

Journal

JOURNAL OF CLINICAL MICROBIOLOGY
Volume 40, Issue 10, Pages 3789-3792

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JCM.40.10.3789-3792.2002

Keywords

-

Categories

Ask authors/readers for more resources

To characterize the genetic basis of drug resistance in Mycobacterium tuberculosis in Latvia, mutations involved in rifampin (rpoB gene) and isoniazid (katG gene) resistance in DNA from 19 drug-susceptible and 51 multidrug-resistant M. tuberculosis complex isolates were analyzed. The most frequent rpoB gene mutations found by the Line Probe assay were the S531L (14 of 34 isolates), D516V (7 of 34), H526D (4 of 34), and D516Y plus P535S (4 of 34) mutations. Direct sequencing of seven isolates with unclear results from Line Probe assay showed the presence of the L533P mutation and the Q510H plus H526Y (I of 34) and D516V plus P535S (4 of 34) double mutations, neither of which has been described previously. Single-strand conformation polymorphism analysis showed strand mobility differences between the rifampin-susceptible and -resistant samples for the D516V, H526D, and D516Y plus P535S mutations but not for the S531L mutation. Nucleotide substitution at codon 315 (AGC-->ACC) of the katG gene was found in 48 of 51 multidrug-resistant samples by sequencing. Furthermore, katG gene restriction fragment length polymorphism analysis with endonuclease AciI confirmed the nucleotide change in codon 315.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available