4.7 Article

Estimating stellar rotation from starspot detection during planetary transits

Journal

ASTROPHYSICAL JOURNAL LETTERS
Volume 683, Issue 2, Pages L179-L182

Publisher

IOP PUBLISHING LTD
DOI: 10.1086/591846

Keywords

eclipses; planetary systems; stars : rotation; stars : spots

Funding

  1. FAPESP [06/50654-3]
  2. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [06/50654-3] Funding Source: FAPESP

Ask authors/readers for more resources

A new method for determining the stellar rotation period is proposed here, based on the detection of starspots during transits of an extrasolar planet orbiting its host star. As the planet eclipses the star, it may pass in front of a starspot which will then make itself known through small flux variations in the transit light curve. If we are lucky enough to catch the same spot on two consecutive transits, it is possible to estimate the stellar rotational period. This method is successfully tested on transit simulations on the Sun yielding the correct value for the solar period. By detecting two starspots on more than one transit of HD 209458 observed by the Hubble Space Telescope, it was possible to estimate a period of either 9.9 or 11.4 days for the star, depending on which spot is responsible for the signature in the light curve a few transits later. Comparison with period estimates of HD 209458 reported in the literature indicates that 11.4 days is the most likely stellar rotation period.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available