4.8 Article

'Missing mass' effect in biosensor's QCM applications

Journal

BIOSENSORS & BIOELECTRONICS
Volume 17, Issue 10, Pages 835-841

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/S0956-5663(02)00050-7

Keywords

acoustical biosensors; quartz crystal microbalance; supported membranes; viscoelasticity

Ask authors/readers for more resources

Nowadays, liquid applications of quartz crystal microbalance (QCM) opened a way for in situ studies of proteins, vesicles and cells adsorbed from the solution onto the QCM surface. The sensitivity of QCM to the viscoelasticity of the adsorbed biomaterial can be a reason of the experimentally observed deviation from a linear dependence of QCM resonant frequency on mass deposition (the so-called Sauerbrey relation) and can limit its application for biosensoring. Presented here rigorous theoretical analysis explains the deviation from ideal mass response of soft overlayers in the contact with liquid. The fundamental result of the theory is the analog of Sauerbrey relation for layered viscous/viscoelastic medium which can be exploited for the correct physical interpretation of QCM experimental data in biofluids, in particular for measurements of the 'true' surface mass of adsorbed biomolecular films. We predict a new physical effect 'missing mass' of the sample in liquid phase measurements and compare the results given by our theory with QCM measurements on supported membranes. (C) 2002 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available