4.7 Article

The Sloan Lens ACS Survey. V. The full ACS strong-lens sample

Journal

ASTROPHYSICAL JOURNAL
Volume 682, Issue 2, Pages 964-984

Publisher

IOP PUBLISHING LTD
DOI: 10.1086/589327

Keywords

galaxies : elliptical and lenticular, cD; gravitational lensing; surveys

Ask authors/readers for more resources

We present the definitive data for the full sample of 131 strong gravitational lens candidates observed with the Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope by the Sloan Lens ACS (SLACS) Survey. All targets were selected for higher redshift emission lines and lower redshift continuum in a single Sloan Digital Sky Survey (SDSS) spectrum. The foreground galaxies are primarily of early-type morphology, with redshifts from z similar or equal to 0.05 to 0.5 and velocity dispersions from sigma similar or equal to 160 to 400 km s(-1); the faint background emission-line galaxies have redshifts ranging from z similar or equal to 0.2 to 1.2. We confirm 70 systems showing clear evidence of multiple imaging of the background galaxy by the foreground galaxy, as well as an additional 19 systems with probable multiple imaging. For 63 clear lensing systems, we present singular isothermal ellipsoid and light-traces-mass gravitational lens models fitted to the ACS imaging data. These strong-lensing mass measurements are supplemented by magnitudes and effective radii measured from ACS surface brightness photometry and redshifts and velocity dispersions measured from SDSS spectroscopy. These data constitute a unique resource for the quantitative study of the interrelations between mass, light, and kinematics in massive early-type galaxies. We show that the SLACS lens sample is statistically consistent with being drawn at random from a parent sample of SDSS galaxies with comparable spectroscopic parameters and effective radii, suggesting that the results of SLACS analyses can be generalized to the massive early-type population.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available