4.7 Article

Molecular shells in IRC+10216: Evidence for nonisotropic and episodic mass-loss enhancement

Journal

ASTROPHYSICAL JOURNAL
Volume 678, Issue 1, Pages 303-308

Publisher

IOP Publishing Ltd
DOI: 10.1086/527669

Keywords

circumstellar matter; ISM : molecules; stars : AGB and post-AGB; stars : individual (IRC+10216); stars : mass loss

Ask authors/readers for more resources

We report high angular resolution VLA observations of cyanopolyyne molecules HC3N and HC5N from the carbon rich circumstellar envelope of IRC+10216. The observed low-lying rotational transitions trace a much more extended emitting region than seen in previous observations at higher frequency transitions. We resolve the hollow quasi-spherical distribution of the molecular emissions into a number of clumpy shells. These molecular shells coincide spatially with dust arcs seen in deep optical images of the IRC+10216 envelope, allowing us to study for the first time the kinematics of these features. We find that the molecular and dust shells represent the same density enhancements in the envelope separated in time by similar to 120 to similar to 360 yr. From the angular size and velocity spread of the shells, we estimate that each shell typically covers about 10% of the stellar surface at the time of ejection. The distribution of the shells seems to be random in space. The good spatial correspondence between HC3N and HC5N emissions is in qualitative agreement with a recent chemical model that takes into account the presence of density-enhanced shells. The broad spatial distribution of the cyanopolyyne molecules, however, would necessitate further study on their formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available