4.7 Article

ERASING DARK MATTER CUSPS IN COSMOLOGICAL GALACTIC HALOS WITH BARYONS

Journal

ASTROPHYSICAL JOURNAL LETTERS
Volume 685, Issue 2, Pages L105-L108

Publisher

IOP PUBLISHING LTD
DOI: 10.1086/592687

Keywords

dark matter; galaxies: evolution; galaxies: formation; galaxies: halos; galaxies: interactions; galaxies: kinematics and dynamics

Funding

  1. NASA
  2. STScI
  3. Direct For Mathematical & Physical Scien [0807760] Funding Source: National Science Foundation
  4. Division Of Astronomical Sciences [0807760] Funding Source: National Science Foundation

Ask authors/readers for more resources

We study the central dark matter (DM) cusp evolution in cosmologically grown galactic halos. Numerical models with and without baryons (baryons + DM, hereafter BDM model, and pure DM, PDM model, respectively) are advanced from identical initial conditions, obtained using the Constrained Realization method. The DM cusp properties are contrasted by a direct comparison of pure DM and baryonic models. We find a divergent evolution between the PDM and BDM models within the inner few x 10 kpc region. The PDM model forms an R(-1) cusp as expected, while the DM in the BDM model forms a larger isothermal cusp R(-2) instead. The isothermal cusp is stable until z similar to 1 when it gradually levels off. This leveling proceeds from inside out and the final density slope is shallower than -1 within the central 3 kpc (i. e., expected size of the R(-1) cusp), tending to a flat core within similar to 2 kpc. This effect cannot be explained by a finite resolution of our code which produces only a 5% difference between the gravitationally softened force and the exact Newtonian force of point masses at 1 kpc from the center. Neither is it related to the energy feedback from stellar evolution or angular momentum transfer from the bar. Instead it can be associated with the action of DM + baryon subhalos heating up the cusp region via dynamical friction and forcing the DM in the cusp to flow out and to cool down. The process described here is not limited to low z and can be efficient at intermediate and even

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available