4.7 Article

Dynamical treatment of virialization heating in galaxy formation

Journal

ASTROPHYSICAL JOURNAL
Volume 672, Issue 2, Pages 752-756

Publisher

UNIV CHICAGO PRESS
DOI: 10.1086/523623

Keywords

cosmology : theory; early universe; galaxies : formation

Ask authors/readers for more resources

In a hierarchical picture of galaxy formation virialization continually transforms gravitational potential energy into kinetic energies of the baryonic and dark matter. For the gaseous component the kinetic, turbulent energy is transformed eventually into internal thermal energy through shocks and viscous dissipation. Traditionally this virialization and shock heating has been assumed to occur instantaneously, allowing an estimate of the gas temperature to be derived from the virial temperature defined from the embedding dark matter halo velocity dispersion. As the mass grows the virial temperature of a halo grows. Mass accretion hence can be translated into a heating term. We derive this heating rate from the extended Press Schechter formalism and demonstrate its usefulness in semianalytical models of galaxy formation. Our method explicitly conserves energy, unlike the previous impulsive heating assumptions. Our formalism can trivially be applied in all current semianalytical models as the heating term can be computed directly from the underlying merger trees. Our analytic results for the first cooling halos and the transition from cold to hot accretion are in agreement with numerical simulations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available