4.4 Article

Structural and biochemical characterization of a fluorogenic rhodamine-labeled malarial protease substrate

Journal

BIOCHEMISTRY
Volume 41, Issue 40, Pages 12244-12252

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi0263661

Keywords

-

Ask authors/readers for more resources

Activation of the proenzyme form of the malarial protease PfSUB-1 involves the autocatalytic cleavage of an Asp-Asn bond within the internal sequence Motif (215)LVSADNIDIS(224). A synthetic decapeptide based on this sequence but with the N- and C-terminal residues replaced by cysteines (Ac-CVSADNIDIC-OH) was labeled with 5- or 6-isomers of iodoacetamidotetramethylrhodamine (IATR). The doubly labeled peptides have low fluorescence because of ground-state, noncovalent dimerization of the rhodamines. Cleavage of either peptide by recombinant PfSUB-1 results in dissociation of the rhodamine dimers, which abolishes the self-quenching and consequently leads to an similar to30-fold increase in the fluorescence. This spectroscopic signal provides a continuous assay of proteolysis, enabling quantitative kinetic measurements to be made, and has also enabled the development of a fluorescence-based assay suitable for use in high-throughput screens for inhibitors of PfSUB-1. The structure of the rhodamine dimer in the 6-IATR-labeled peptide was shown by NMR to be a face-to-face stacking of the xanthene rings. Time-resolved fluorescence measurements suggest that the doubly labeled peptides exist in an equilibrium consisting of rhodamines involved in dimers (closed forms) and rhodamines not involved in dimers (open forms). These data also indicate that the rhodamine dimers fluoresce and that the associated lifetimes are subnanosecond.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available