4.8 Article

Size-dependent spontaneous alloying of Au-Ag nanoparticles

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 124, Issue 40, Pages 11989-11996

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja026764r

Keywords

-

Ask authors/readers for more resources

We report on systematic studies of size-dependent alloy formation of silver-coated gold nanoparticles (NPs) in aqueous solution at ambient temperature using X-ray absorption fine structure spectroscopy (XAFS). Various Au-core sizes (2.5-20 nm diameter) and Ag shell thicknesses were synthesized using radiolytic wet techniques. The equilibrium structures (alloy versus core-shell) of these NPs were determined in the suspensions. We observed remarkable size dependence in the room temperature interdiffusion of the two metals. The interdiffusion is limited to the subinterface layers of the bimetallic NPs and depends on both the core size and the total particle size. For the very small particles (less than or equal to4.6 nm initial Au-core size), the two metals are nearly randomly distributed within the particle. However, even for these small Au-core NPs, the interdiffusion occurs primarily in the vicinity of the original interface. Features from the Ag shells do remain. For the larger particles, the boundary is maintained to within one monolayer. These results cannot be explained either by enhanced self-diffusion that results from depression of the melting point with size or by surface melting of the NPs. We propose that defects, such as vacancies, at the bimetallic interface enhance the radial migration (as well as displacement around the interface) of one metal into the other. Molecular dynamics calculations correctly predict the activation energy for diffusion of the metals in the absence of vacancies and show an enormous dependence of the rate of mixing on defect levels. They also suggest that a few percent of the interfacial lattice sites need to be vacant to explain the observed mixing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available