4.6 Article

Characterization of quinonoid-dihydropteridine reductase (QDPR) from the lower eukaryote Leishmania major

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 41, Pages 38245-38253

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M206543200

Keywords

-

Funding

  1. NIAID NIH HHS [AI21903, AI29646] Funding Source: Medline

Ask authors/readers for more resources

Biopterin is required for growth of the protozoan parasite Leishmania and is salvaged from the host through the activities of a novel biopterin transporter (BT1) and broad-spectrum pteridine reductase (PTR1). Here we characterize Leishmania major quinonoid-dihydropteridine reductase (LmQDPR), the key enzyme required for regeneration and maintenance of H(4)biopterin pools. LmQDPR shows good homology to metazoan quinonoid-dihydropteridine reductase and conservation of domains implicated in catalysis and regulation. Unlike other organisms, LmQDPR is encoded by a tandemly repeated array of 8-9 copies containing LmQDPR plus two other genes. QDPR mRNA and enzymatic activity were expressed at similar levels throughout the infectious cycle. The pH optima, kinetic properties, and substrate specificity of purified LmQDPR were found to be similar to that of other qDPRs, although it lacked significant activity for non-quinonoid pteridines. These and other data suggest that LmQDPR is unlikely to encode the dihydrobiopterin reductase activity (PTR2) described previously. Similarly LmQDPR is not inhibited by a series of antifolates showing anti-leishmanial activity beyond that attributable to dihydrofolate reductase or PTR1 inhibition. qDPR activity was found in crude lysates of Trypanosoma brucei and Trypanosoma cruzi, further emphasizing the importance of H(4)biopterin throughout this family of human parasites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available