4.6 Article

Molecular cloning and characterization of a novel chondroitin sulfate glucuronyltransferase that transfers glucuronic acid to N-acetylgalactosamine

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 41, Pages 38179-38188

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M202601200

Keywords

-

Ask authors/readers for more resources

We found a novel human gene (GenBank(TM) accession number AB037823, Kazusa DNA Research Institute KIAA1402) that possesses homology with chondroitin synthase. The full-length open reading frame consists of 772 amino acids and encodes a typical type 11 membrane protein. This enzyme had a domain containing beta3-glycosyltransferase motifs, which might be a beta3-glucuronyltransferase domain, but no domain with beta4-glycosyltransferase motifs, although both are found in chondroitin synthase. The putative catalytic domain was expressed in COS-7 cells as a soluble enzyme. Its glucuronyltransferase activity was observed when chondroitin and chondroitin sulfate polysaccharides and oligosaccharides were used as acceptor substrates. However, it was not detected when dermatan sulfate, hyaluronan, heparan sulfate, heparin, N-acetylheparosan, lactosamine tetrasaccharide, and linkage tri- and tetrasaccharide acceptors were employed. The reaction product, which was speculated to exhibit a GlcAbeta1-3GalNAc linkage structure at its non-reducing terminus, showed the following characteristics. 1) It was catabolized by beta-glucuronidase. 2) It was an acceptor for Escherichia coli K4 chondroitin polymerase (K4 chondroitin polymerase). 3) The product of K4 chondroitin polymerase was cleaved by chondroitinase ACII. On the other hand, no N-acetylgalactosaminyltransferase activity was detected toward any acceptors. Quantitative real time PCR analysis revealed that its transcripts were highly expressed in the placenta, small intestine, and pancreas, although they were ubiquitously expressed in various tissues and cell lines. This enzyme could play a role in the synthesis of chondroitin sulfate as a glucuronyltransferase.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available