4.7 Article

Prompt shocks in the gas disk around a recoiling supermassive black hole binary

Journal

ASTROPHYSICAL JOURNAL LETTERS
Volume 676, Issue 1, Pages L5-L8

Publisher

IOP PUBLISHING LTD
DOI: 10.1086/587034

Keywords

black hole physics; galaxies : nuclei; gravitational waves

Ask authors/readers for more resources

Supermassive black hole binaries (BHBs) produced in galaxy mergers recoil at the time of their coalescence due to the emission of gravitational waves (GWs). We simulate the response of a thin, 2D disk of collisionless particles, initially on circular orbits around a 10(6) M-circle dot BHB, to kicks that are either parallel or perpendicular to the initial orbital plane. Typical kick velocities (nu(kick)) can exceed the sound speed in a circumbinary gas disk. While the inner disk is strongly bound to the recoiling binary, the outer disk is only weakly bound or unbound. This leads to differential motions in the disturbed disk that increase with radius and can become supersonic at greater than or similar to 700 Schwarzschild radii for nu(kick) = 500 km s(-1), implying that shocks form beyond this radius. We indeed find that kicks in the disk plane lead to immediate strong density enhancements (within weeks) in a tightly wound spiral caustic, propagating outward at the speed similar to nu(kick). Concentric density enhancements are also observed for kicks perpendicular to the disk, but are weaker and develop into caustics only after a long delay (> 1 yr). Unless both BH spins are low or precisely aligned with the orbital angular momentum, a significant fraction (greater than or similar to several %) of kicks are sufficiently large and well aligned with the orbital angular momentum, a significant fraction (greater than or similar to several %) of kicks are sufficiently large and well aligned with the orbital plane for strong shocks to be produced. The shocks could result in an afterglow whose luminosity and characteristic photon energy increases with time, helping to identify the EM counterparts of GW sources discovered by LISA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available