4.6 Article

Identification of S-glutathionylated cellular proteins during oxidative stress and constitutive metabolism by affinity purification and proteomic analysis

Journal

ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS
Volume 406, Issue 2, Pages 229-240

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/S0003-9861(02)00468-X

Keywords

protein thiols; redox modification; glutathione; S-glutathionylation; affinity chromatography; proteomics

Ask authors/readers for more resources

Redox modification of proteins is proposed to play a central role in regulating cellular function. However, high-throughput techniques for the analysis of the redox status of individual proteins in complex mixtures are lacking. The aim was thus to develop a suitable technique to rapidly identify proteins undergoing oxidation of critical thiols by S-glutathionylation. The method is based on the specific reduction of mixed disulfides by glutaredoxin, their reaction with N-ethylmaleimitle-biotin, affinity purification of tagged proteins, and identification by proteomic analysis. The method unequivocally identified 43 mostly novel cellular protein substrates for S-glutathionylation. These include protein chaperones, cytoskeletal proteins, cell cycle regulators, and enzymes of intermediate metabolism. Comparisons of the patterns of S-glutathionylated proteins extracted from cells undergoing diamide-induced oxidative stress and during constitutive metabolism reveal both common protein substrates and substrates failing to undergo enhanced S-glutathionylation during oxidative stress. The ability to chemically tag, select, and identify S-glutathionylated proteins, particularly during constitutive metabolism, will greatly enhance efforts to establish posttranslational redox modification of cellular proteins as an important biochemical control mechanism in coordinating cellular function. (C) 2002 Elsevier Science (USA). All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available