4.6 Article

Photoluminescence features on the Raman spectra of quasistoichiometric SiC nanoparticles:: Experimental and numerical simulations -: art. no. 155317

Journal

PHYSICAL REVIEW B
Volume 66, Issue 15, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.66.155317

Keywords

-

Ask authors/readers for more resources

Visible photoluminescence (PL) broad bands are observed in the Raman spectra of SiC nanoparticles (np-SiC) with diameters ranging from 10 to 25 nm. The phenomenon is studied versus the particle size, chemical composition, annealing, and oxidation treatments. In the case of quasistoichiometric np-SiC, excitation by 514-nm radiation gives rise to broad red PL emissions mainly enhanced by the amorphous fraction of the particles and by the surface chemical disorder induced by oxidation. The PL spectra are quantitatively analyzed using numerical methods based on cluster approaches. PL bands are calculated as a function of the cluster geometry and defects (carbon and silicon vacancies), as well as the oxygen location within np-SiC sites. The relevance of this numerical analysis is discussed to account for the main features of the PL broad structure. The PL signature in SiC nanopowders can be used to monitor the physical organization of the np-SiC and to point out their amorphous structure fraction, surface states, and the defect contents.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available