4.7 Article

Damping of slow MHD coronal loop oscillations by shocks

Journal

ASTROPHYSICAL JOURNAL
Volume 685, Issue 2, Pages 1286-1290

Publisher

UNIV CHICAGO PRESS
DOI: 10.1086/591077

Keywords

plasmas; Sun : corona; Sun : oscillations; waves

Funding

  1. UK Engineering and Physical Sciences Research Council
  2. STFC [ST/F00205X/1] Funding Source: UKRI
  3. Science and Technology Facilities Council [ST/F00205X/1] Funding Source: researchfish

Ask authors/readers for more resources

The damping of slow magnetoacoustic coronal loop oscillations by shock dissipation is investigated. Observations of large-amplitude slow-mode observations made by SUMER show a clear dependency of the damping rate on the oscillation amplitude. Fully nonlinear MHD simulations of slow-mode oscillations in the presence of thermal conduction are performed that show that shock dissipation is an important damping mechanism at large amplitudes, enhancing the damping rate by up to 50% above the rate given by thermal conduction alone. A comparison between the numerical simulations and the SUMER observations shows that although the shock dissipation model can indeed produce an enhanced damping rate that is a function of the oscillation amplitude, the dependency that we found is not as strong as that for the observations, even after observational corrections and the inclusion of enhanced linear dissipation were considered.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available