4.8 Article

Genomic instability in mouse Burkitt lymphoma is dominated by illegitimate genetic recombinations, not point mutations

Journal

ONCOGENE
Volume 21, Issue 47, Pages 7235-7240

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.onc.1205697

Keywords

in vivo mutant rates; MYC; mutator phenotype; B-cell neoplasia; genomic instability

Ask authors/readers for more resources

lambda-MYC-induced mouse Burkitt lymphoma (BL) harboring the shuttle vector pUR288, which includes a lacZ reporter gene to study mutagenesis, was employed to assess genomic instability associated with MYC deregulation. The frequency of lacZ mutations in lymphomas was elevated only 1.75-fold above that in normal tissue, indicating that mouse BL does not exhibit a phenotype of hypermutability. However, the nature of lacZ mutations was strikingly different in normal tissues and lymphomas. While point mutations comprised approximately 75% of the mutations found in normal tissues, apparent translocations, deletions and inversions constituted the majority of mutations (similar to65%) in lymphomas. Genomic instability in mouse BL thus seems characterized by a preponderance of illegitimate genetic rearrangements in the context of near-background mutant frequencies. SKY analyses of cell lines from primary BL tumors revealed substantial changes in chromosomal structure, confirming the lacZ studies. Bi-allelic deletions of the tumor suppressor p16(Ink4a) were detected in six out of 16 cell lines, illustrating cellular selection of advantageous mutations. Together, these approaches indicate that MYC may contribute to lymphomagenesis through the dominant mutator effect of inducing chromosomal instability. The results further suggest that a phenotype of hypermutability (elevated mutant frequency) may not always be required for oncogenesis to occur.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available