4.5 Article

Effects of Long-Term Stowage on the Deployment of Bistable Tape Springs

Publisher

ASME
DOI: 10.1115/1.4031618

Keywords

-

Categories

Funding

  1. EPSRC under the ACCIS Centre for Doctoral Training [EP/G036772/1]

Ask authors/readers for more resources

In the context of strain-energy-deployed space structures, material relaxation effects play a significant role in structures that are stowed for long durations, for example, in a space vehicle prior to launch. Here, the deployment of an ultrathin carbon fiber reinforced plastic (CFRP) tape spring is studied, with the aim of understanding how long-duration stowage affects its deployment behavior. Analytical modeling and experiments show that the deployment time increases predictably with stowage time and temperature, and analytical predictions are found to compare well with experiments. For cases where stress relaxation is excessive, the structure is shown to lose its ability to deploy autonomously.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available