4.8 Article

Targeted deletion of angiotensin II type 2 receptor caused cardiac rupture after acute myocardial infarction

Journal

CIRCULATION
Volume 106, Issue 17, Pages 2244-2249

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.CIR.0000033826.52681.37

Keywords

angiotensin; collagen; myocardial infarction; prostaglandins; remodeling

Funding

  1. NHLBI NIH HHS [HL-58205] Funding Source: Medline

Ask authors/readers for more resources

Background-Accumulating evidence has suggested that the cardiac renin-angiotensin system is activated during the remodeling process after myocardial infarction (MI). Although 2 types of angiotensin II receptors (AT(1) and AT(2)) are upregulated in the infarcted tissue, the contribution of AT(2) to the subsequent fibrogenetic phase of wound healing is less certain. This study was conducted to evaluate the role of AT(2) in wound healing after MI using an in vivo intervention study in mice with MI. Methods and Results-We examined myocardial hypertrophy, cardiac fibrosis, and morphological evidence of fibrillar collagen accumulation at the infarcted and noninfarcted regions in male mice lacking the AT(2) receptor (Agtr2-/Y) and age-matched wild-type (WT) animals. Of the Agtr2-/Y mice, 63.6% died of cardiac rupture, whereas 23.5% of the WT mice died of the same cause within 1 week. The extent of fibrosis and that of collagen gene expression in Agtr2-/Y mice were significantly reduced compared with WT mice at 1 week after coronary ligation. Furthermore, MI resulted in a marked increase in the prostaglandin E-2 (PGE(2)) level at 4 days after surgery in Agtr2-/Y mice. In WT mice, the PGE(2) level was also elevated after MI but to a significantly lesser extent than in Agtr2-/Y mice. Conclusions-A chronic loss of AT(2) by gene targeting prevented the collagen deposition and caused cardiac rupture. The markedly elevated PGE(2) may be a mechanism that inhibits collagen synthesis in the infarcted region of Agtr2-/Y mice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available