4.8 Article

p53 and p21 form an inducible barrier that protects cells against cyclin E-cdk2 deregulation

Journal

CURRENT BIOLOGY
Volume 12, Issue 21, Pages 1817-1827

Publisher

CELL PRESS
DOI: 10.1016/S0960-9822(02)01225-3

Keywords

-

Funding

  1. NCI NIH HHS [T32 CA09515-17, K08 CA101800, R01 CA102742, R01 CA84069, T32 CA80416-05] Funding Source: Medline

Ask authors/readers for more resources

Background: Cyclin E, in conjunction with its catalytic partner cdk2, is rate limiting for entry into the S phase of the cell cycle. Cancer cells frequently contain mutations within the cyclin D-Retinoblastoma protein pathway that lead to inappropriate cyclin E-cdk2 activation. Although deregulated cyclin E-cdk2 activity is believed to directly contribute to the neoplastic progression of these cancers, the mechanism of cyclin E-induced neoplasia is unknown. Results: We studied the consequences of deregulated cyclin E expression in primary cells and found that cyclin E initiated a p53-dependent response that prevented excess cdk2 activity by inducing expression of the p21Cip1 cdk inhibitor. The increased p53 activity was not associated with increased expression of the p14ARF tumor suppressor. Instead, cyclin E led to increased p53 serine15 phosphorylation that was sensitive to inhibitors of the ATM/ATR family. When either p53 or p21cip1 was rendered nonfunctional, then the excess cyclin E became catalytically active and caused defects in S phase progression, increased ploidy, and genetic instability. Conclusions: We conclude that p53 and p21 form an inducible barrier that protects cells against the deleterious consequences of cyclin E-cdk2 deregulation. A response that restrains cyclin E deregulation is likely to be a general protective mechanism against neoplastic transformation. Loss of this response may thus be required before deregulated cyclin E can become fully oncogenic in cancer cells. Furthermore, the combination of excess cyclin E and p53 loss may be particularly genotoxic, because cells cannot appropriately respond to the cell cycle anomalies caused by excess cyclin E-cdk2 activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available