4.7 Article

Magnetic and electric field observations during the 2000 activity of Miyake-jima volcano, Central Japan

Journal

EARTH AND PLANETARY SCIENCE LETTERS
Volume 203, Issue 2, Pages 769-777

Publisher

ELSEVIER
DOI: 10.1016/S0012-821X(02)00857-9

Keywords

eruptions; monitoring; hydrothermal conditions; eruptions mechanisms; magnetic methods; electrical methods

Ask authors/readers for more resources

Magnetic and electric field variations associated with the 2000 eruption of Miyake-jima volcano are summarized. For about 1 week prior to the July 8 phreatic explosion, significant changes in the total intensity were observed at a few stations, which indicated uprising of a demagnetized area from a depth of 2 km towards the summit: this nonmagnetic source can be regarded as a vacant space itself. Electric and magnetic field variations were observed simultaneously associated with the tilt-step event, which was the abrupt (similar to50 s) inflation at a few km depth within the volcano followed by gradual recovery (similar toseveral hours). The electric field is ascribed to the electrokinetic effect most probably due to forced injection of fluids from the source, while the magnetic field to the piezomagnetic effect due to increased pressure. Large magnetic variations amounting to a few tens of nT were observed at several stations since July 8, and they turned almost flat after the August 18 largest eruption. Magnetic changes are explained mostly by the vanishing of magnetic mass in the summit and additionally by the thermal demagnetization at a rather shallow depth. A large increase in the self-potential by 130 mV was also observed near the summit caldera associated with the August 18 eruption, which suggests that the hydrothermal circulation system sustained within the volcano for the past more than 10 years was destroyed by this eruption. (C) 2002 Published by Elsevier Science B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available