4.2 Review

Membrane fouling in membrane bioreactors for wastewater treatment

Journal

JOURNAL OF ENVIRONMENTAL ENGINEERING
Volume 128, Issue 11, Pages 1018-1029

Publisher

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)0733-9372(2002)128:11(1018)

Keywords

membrane; wastewater treatment; sewage; biomass; biological treatment

Ask authors/readers for more resources

Membrane bioreactors (MBRs), in which membranes are applied to biological wastewater treatment for biomass separation, provide many advantages over conventional treatment. However, membrane fouling in MBRs restricts their widespread application because it reduces productivity and increases maintenance and operating costs. Recently much research and development has taken place to investigate, model, and control membrane fouling processes. However, unified and well-structured theories on membrane fouling are not currently available because of the complexity of the biomass matrix, which is highly heterogeneous and includes living microorganisms. Membrane fouling in MBR systems can be reversible (i.e., removable by physical washing) or irreversible (removable by chemical cleaning only), and can take place on the membrane surface or into the membrane pores. Although establishing a general model to describe membrane fouling in such a process is made extremely difficult by the inherent heterogeneity of the system, the nature and extent of fouling in MBRs is strongly influenced by three factors: biomass characteristics, operating conditions, and membrane characteristics. Fouling control techniques which have been investigated include low-flux operation, high-shear slug flow aeration in submerged configuration, periodical air or permeate backflushing, intermittent suction operation or addition of powdered activated carbon (PAC). Of these, only PAC addition is currently not used in existing large-scale installations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available