4.8 Article

Swelling behavior of a genetically engineered silk-elastinlike protein polymer hydrogel

Journal

BIOMATERIALS
Volume 23, Issue 21, Pages 4203-4210

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/S0142-9612(02)00164-3

Keywords

genetically engineered polymers; drug delivery; silk-elastinlike; hydrogels

Ask authors/readers for more resources

The influence of environmental conditions such as pH, temperature, and ionic strength on the equilibrium swelling ratio of physically crosslinked networks of a genetically engineered silk-elastinlike protein-based copolymer (SELP) with an amino acid repeat sequence of [(GVGVP)(4)GKGVP(GVGVP)(3)(GAGAGS)(4)](12) was investigated. The effects of gelation cure time and initial polymer concentration on the equilibrium swelling ratio and soluble fraction of the hydrogels were also studied. It was found that the soluble fraction linearly correlated with the initial polymer concentration at higher gelation times. Soluble fraction results suggest that final hydrogel water content may be controlled by both initial polymer concentration and gelation time. Equilibrium swelling studies demonstrated that these hydrogels are relatively insensitive to environmental changes such as pH, temperature, and ionic strength. Over the concentration range studied, it was found that an increase in gelation time at 37degreesC resulted in lower hydrogel weight equilibrium swelling ratios, which corresponds to less soluble polymer released post-gelation. Together, these results have implications for the controlled delivery of bioactive agents from silk-elastinlike hydrogels. (C) 2002 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available