4.5 Article

Triton promotes domain formation in lipid raft mixtures

Journal

BIOPHYSICAL JOURNAL
Volume 83, Issue 5, Pages 2693-2701

Publisher

BIOPHYSICAL SOCIETY
DOI: 10.1016/S0006-3495(02)75278-8

Keywords

-

Categories

Ask authors/readers for more resources

Biological membranes are supposed to contain functional domains (lipid rafts) made up in particular of sphingomyelin and cholesterol, glycolipids, and certain proteins. It is often assumed that the application of the detergent Triton at 4degreesC allows the isolation of these rafts as a detergent-resistant membrane fraction. The current study aims to clarify whether and how Triton changes the domain properties. To this end, temperature-dependent transitions in vesicles of an equimolar mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, egg sphingomyelin, and cholesterol were monitored at different Triton concentrations by differential scanning calorimetry and pressure perturbation calorimetry. Transitions initiated by the addition of Triton to the lipid mixture were studied by isothermal titration calorimetry, and the structure was investigated by P-31-NMR. The results are discussed in terms of liquid-disordered (Id) and -ordered (to) bilayer and micellar (mic) phases, and the typical sequence encountered with increasing Triton content or decreasing temperature is Id, Id + Io, Id + Io + mic, and Io + mic. That means that addition of Triton may create ordered domains in a homogeneous fluid membrane, which are, in turn, Triton resistant upon subsequent membrane solubilization. Hence, detergent-resistant membranes should not be assumed to resemble biological rafts in size, structure, composition, or even existence. Functional rafts may not be steady phenomena; they might form, grow, cluster or break up, shrink, and vanish according to functional requirements, regulated by rather subtle changes in the activity of membrane disordering or ordering compounds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available