4.4 Article Proceedings Paper

A constitutive model for material growth and its application to three-dimensional finite element analysis

Journal

MECHANICS RESEARCH COMMUNICATIONS
Volume 29, Issue 6, Pages 477-483

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0093-6413(02)00294-X

Keywords

-

Categories

Ask authors/readers for more resources

This paper describes a material model, in which the materials under consideration grow up in a particular direction while re-organizing themselves to the surroundings. The structural reorganization is modeled as the rearrangement of anisotropy. Two models are proposed; one is that the anisotropic vector is embedded just as in fiber-reinforced materials, and the other is that the vector behaves like a float. In order to apply the present model to boundary-value problems, a three-dimensional finite element formulation is obtained with reference to the total-Lagrangian approach. Here we evaluate the performance of the model in terms of anisotropic growth; (a) adaptation behavior of a quasi-isotropy in the initial state, and (b) monotonic growth in helical direction. (C) 2002 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available