4.3 Article

Anaerobic microbial growth from components of cretaceous shales

Journal

GEOMICROBIOLOGY JOURNAL
Volume 19, Issue 6, Pages 593-602

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/01490450290098559

Keywords

anaerobic; cretaceous; shale; sulfate-reducing

Ask authors/readers for more resources

Cretaceous rock formations have been shown to harbor extant sulfate-reducing microbial communities. At these sites, microbial activity is concentrated at rock interfaces where there is likely a diffusion of nutrients from low permeability organic rich shales to higher permeability sandstones. This study was undertaken to further characterize this process and to determine the components of shale that provide electron donors for sulfate reduction activity. To this end, samples of Cretaceous sandstones were incubated with ground shales from available depths at the Cerro Negro exploratory drilling site in northwestern New Mexico. Both sulfate consumption as an indicator of sulfate reduction and acetate production were stimulated in the sandstone-shale incubations. The greatest levels of stimulation were observed with shales originally closest to the lower sandstone-shale interface and a strong correlation was observed between shale organic carbon and microbial activity. These results suggested that the organic matter in shale was supplying the needed electron donor for the sulfate-reducing microbial community. Further evidence for this interpretation was provided when a pure culture of Acetobacteriump sammolithicum, an acetogen isolated from this site, was stimulated to produce acetate by the addition of autoclaved shales. To investigate the components in shale that were responsible for stimulating microbial activity, we extracted shale organic material. Aqueous extracts and to a lesser extent neutral ether extractions stimulated activity although neither to the same extent as the shale itself. Alkaline aqueous extracts were fractionated using XAD-7 resin. Each of the fractions contributed to some degree, but the greatest stimulation in microbial activity was attributed to both the hydrophilic eluate and to the fulvic acid fraction. These data indicate that a relatively complex group of organic compounds supply electron donors to the sandstone microbial communities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available