4.6 Article

Attenuation of ischemia/reperfusion induced MAP kinases by N-acetyl cysteine, sodium nitroprusside and phosphoramidon

Journal

MOLECULAR AND CELLULAR BIOCHEMISTRY
Volume 240, Issue 1-2, Pages 19-29

Publisher

SPRINGER
DOI: 10.1023/A:1020675721351

Keywords

MAP kinase; p-JNK; p-P-38; p-ERK; AP-1; c-Fos; c-Jun; Jun-D; Jun-B; Fra-1

Categories

Funding

  1. NINDS NIH HHS [NS-22576, NS-40810, NS-34741, NS-37766] Funding Source: Medline

Ask authors/readers for more resources

Ischemia followed by reperfusion has a number of clinically significant consequences. A number of pathophysiological processes appear to be involved in ischemia/reperfusion (I/R) injury. The mitogen activated protein kinases (MAPK) are integral components of the parallel MAP kinase cascades activated in response to a variety of cellular stress inducing ischemia/ATP depletion and inflammatory cytokines. Many studies suggest that members of the MAP kinase family in particular Jun N-terminal kinase (JNK) are activated in kidney following ischemia/reperfusion of this tissue. The present study underlines the therapeutic potential of the combination of N-acetyl cysteine (NAC), a potent antioxidant, sodium nitroprusside (SNP), a nitric oxide donor and phosphoramidon (P), an endothelin-1 converting enzyme inhibitor in ameliorating the MAPK induced damage during renal ischemia/reperfusion injury. Our previous results showed that 90 min of ischemia followed by reperfusion caused very severe injury and that the untreated animals had 100% mortality after the 3rd day whereas there was improved renal function and 100% survival of animals in the three drug combination treatment group. The present study, mainly on tissue sections, further supports the protection provided by the triple drug therapy. A higher degree of expression of all the three classes of MAPK, i.e. JNK, P-38 MAP kinases and P-extracellular signal regulated kinases (ERKs) can be seen in kidneys subjected to ischemia/reperfusion insult. Pretreatment with a combination of N-acetyl cysteine, sodium nitroprusside, and phosphoramidon completely inhibits all three classes of MAPK and ameliorates AP-1 whereas individual or a combination of any two drugs is not as effective.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available