4.3 Article

Optimal design of horizontal-axis wind turbines using blade-element theory and evolutionary computation

Journal

Publisher

ASME-AMER SOC MECHANICAL ENG
DOI: 10.1115/1.1510868

Keywords

HAWT; stall-regulated turbines; aerodynamic design; evolutionary computation; genetic algorithms; multi-objective design

Ask authors/readers for more resources

This paper describes a. multi-objective optimization method for the design of stall-regulated horizontal-axis wind turbines. Two modules are used for this purpose: an aerodynamic model implementing the blade-element theory and a multi-objective evolutionary algorithm. The former provides a sufficiently accurate solution of the flow field around the rotor disc; the latter handles the decision variables of the optimization problem, i.e., the main geometrical parameters of the rotor configuration, and promotes function optimization. The scope of the method is to achieve the best trade-off performance between two objectives: annual energy production per square meter of wind park (to be maximized) and cost of energy (to be minimized). Examples of the best solutions found by the method are described and their performance compared with those of commercial wind turbines.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available