4.6 Article

Stellar wind interaction and pick-up ion escape of the Kepler-11 super-Earths

Journal

ASTRONOMY & ASTROPHYSICS
Volume 562, Issue -, Pages -

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201322933

Keywords

planet-star interactions; planets and satellites: atmospheres; planets and satellites: individual: Kepler-11 system; methods: numerical

Funding

  1. FWF NFN project [S116601-N16]
  2. EWE NFN subprojects T Tauri Phase [S116 604-N16]
  3. Magnetospheric Electrodynamics of Exoplanets [5116 606-N16]
  4. Particle/Radiative Interactions with Upper Atmospheres of Planetary Bodies Under Extreme Stellar Conditions [S116607-N16]
  5. FWF project [P19962-N16]
  6. EWE project [P22950-N16]
  7. EU [262863]
  8. EUROPLANET-RI projects [JRA3/EMDAF, Na2 science WG5]
  9. RFBR [12-05-00152-a]
  10. Austrian Science Fund (FWF) [P 22950] Funding Source: researchfish

Ask authors/readers for more resources

Aims. We study the interactions between stellar winds and the extended hydrogen-dominated upper atmospheres of planets. We estimate the resulting escape of planetary pick-up ions from the five super-Earths in the compact Kepler-11 system and compare the escape rates with the efficiency of the thermal escape of neutral hydrogen atoms. Methods. Assuming the stellar wind of Kepler-11 is similar to the solar wind, we use a polytropic ID hydrodynamic wind model to estimate the wind properties at the planetary orbits. We apply a direct simulation Monte Carlo model to model the hydrogen coronae and the stellar wind plasma interaction around Kepler-11b-f within a realistic expected heating efficiency range of 15-40%. The same model is used to estimate the ion pick-up escape from the XUV heated and hydrodynamically extended upper atmospheres of Kepler-11b-f. From the interaction model, we study the influence of possible magnetic moments, calculate the charge exchange and photoionization production rates of planetary ions, and estimate the loss rates of pick-up H+ ions for all five planets. We compare the results between the five super-Earths and the thermal escape rates of the neutral planetary hydrogen atoms. Results. Our results show that a huge neutral hydrogen corona is formed around the planet for all Kepler-11b-f exoplanets. The non-symmetric form of the corona changes from planet to planet and is defined mostly by radiation pressure and gravitational effects. Non-thermal escape rates of pick-up ionized hydrogen atoms for Kepler-11 super-Earths vary between similar to.6.4x10(30) s(-1) and similar to 4.1 x10(31) s(-1), depending on the planet's orbital location and assumed heating efficiency. These values correspond to non-thermal mass loss rates of similar to 1.07 x 10(7) g s(-1) and similar to 6.8 x 10(2) g s(-1) respectively, which is a few percent of the thermal escape rates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available