4.5 Article

Scheme for attophysics experiments at a X-ray SASE FEL

Journal

OPTICS COMMUNICATIONS
Volume 212, Issue 4-6, Pages 377-390

Publisher

ELSEVIER
DOI: 10.1016/S0030-4018(02)02008-4

Keywords

-

Categories

Ask authors/readers for more resources

We propose a concept for production of high power coherent attosecond pulses in X-ray range. An approach is based on generation of eighth harmonic of radiation in a multistage HGHG FEL (high gain high harmonic free electron laser) configuration starting from shot noise. Single-spike phenomena occurs when electron bunch is passed through the sequence of four relatively short undulators. The first stage is a conventional long wavelength (0.8 nm) SASE FEL which operates in the high-gain linear regime. The 0.1 nm wavelength range is reached by successive multiplication (0.8-->0.4-->0.2-->0.1 nm) in a stage sequence. Our study shows that the statistical properties of the high-harmonic radiation from the SASE FEL, operating in linear regime, can be used for selection of radiation pulses with a single spike in time domain. The duration of the spikes is in the range of 400-600 attoseconds. Selection of single-spike high-harmonic pulses is achieved by using a special trigger in data acquisition system. The potential of X-ray SASE FEL at TESLA at DESY for generating attosecond pulses is demonstrated. Since the design of XFEL laboratory at TESLA is based on the use of long SASE undulators with tunable gap, no special place nor additional FEL undulators are required for attophysics experiments. The use of a 10 GW-level attosecond X-ray pulses at X-ray SASE FEL facility will enable us to track process inside atoms for the first time. (C) 2002 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available