4.4 Article Proceedings Paper

Power requirements of swimming: Do new methods resolve old questions?

Journal

INTEGRATIVE AND COMPARATIVE BIOLOGY
Volume 42, Issue 5, Pages 1018-1025

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/icb/42.5.1018

Keywords

-

Categories

Ask authors/readers for more resources

A recurring question in the study of fish biomechanics and energetics is the mechanical power required for tail-swimming at the high speeds seen among aquatic vertebrates. The quest for answers has been driven by conceptual advances in fluid dynamics, starting with ideas on the boundary layer and drag initiated by Prandtl, and in measurement techniques starting with force balances focussing on drag and thrust. Drag (=thrust) from measurements on physical models, carcasses, kinematics as inputs to hydromechanical models, and physiological power sources vary from less than that expected for an equivalent rigid reference to over an order of magnitude greater. Estimates of drag and thrust using recent advances largely made possible by increased computing power have not resolved the discrepancy. Sources of drag and thrust are not separable in axial undulatory self propulsion, are open to interpretation and Froude efficiency is zero. Wakes are not easily interpreted, especially for thrust evaluation. We suggest the best measures of swimming performance are velocity and power consumption for which 2D inviscid simulations can give realistic predictions. Steady swimming power is several times that required for towing an equivalent flat plate at the same speed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available