4.6 Article

Heating efficiency in hydrogen-dominated upper atmospheres

Journal

ASTRONOMY & ASTROPHYSICS
Volume 571, Issue -, Pages -

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201423573

Keywords

planets and satellites: atmospheres; ultraviolet: planetary systems; planets and satellites: physical evolution

Funding

  1. FWF NFN [S116 607-N16]
  2. Russian Science Foundation [14-12-01048]
  3. Russian Science Foundation [14-12-01048] Funding Source: Russian Science Foundation

Ask authors/readers for more resources

Context. The heating efficiency eta(h nu) is defined as the ratio of the net local gas-heating rate to the rate of stellar radiative energy absorption. It plays an important role in thermal-escape processes from the upper atmospheres of planets that are exposed to stellar soft X-rays and extreme ultraviolet radiation (XUV). Aims. We model the thermal-escape-related heating efficiency eta(h nu) of the stellar XUV radiation in the hydrogen-dominated upper atmosphere of the extrasolar gas giant HD 209458b. The model result is then compared with previous thermal-hydrogen-escape studies, which assumed eta(h nu) values between 10-100%. Methods. The photolytic and electron impact processes in the thermosphere were studied by solving the kinetic Boltzmann equation and applying a Direct Simulation Monte Carlo model. We calculated the energy deposition rates of the stellar XUV flux and that of the accompanying primary photoelectrons that are caused by electron impact processes in the H-2 -> H transition region in the upper atmosphere. Results. The heating by XUV radiation of hydrogen-dominated upper atmospheres does not reach higher values than 20% above the main thermosphere altitude, if the participation of photoelectron impact processes is included. Conclusions. Hydrogen-escape studies from exoplanets that assume eta(h nu) values that are >= 20% probably overestimate the thermal escape or mass-loss rates, while those who assumed values that are <20% produce more realistic atmospheric-escape rates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available