4.1 Article

Sub-micron spongiform porosoity is the major ultra-structural alteration occurring in archaeological bone

Journal

INTERNATIONAL JOURNAL OF OSTEOARCHAEOLOGY
Volume 12, Issue 6, Pages 407-414

Publisher

JOHN WILEY & SONS LTD
DOI: 10.1002/oa.642

Keywords

bone; porosity; microstructure; bone diagenesis; SEM; mercury intrusion porosimetry

Ask authors/readers for more resources

Total pore volume and pore size distribution are indicators of the degree of post-mortem modification of bone. Direct measurements of pore size distribution in archaeological bones using mercury intrusion porosimetry (HgIP) and back scattered scanning electron microscopy (BSE-SEM) reveal a common pattern int he changes seen in degraded bone as compared to modern samples. The estimates of pore size distribution from HgIP and direct measurement from the BSE-SEM images show remarkable correspondence. The coupling of these two independent approaches has allowed the diagenetic porosity changes in human archaeological bone in the >0.01 mum range to be directly imaged, and their relationship to pre-existing physiological pores to be explored. The increase in porosity in the archaeological bones is restricted to two discrete pore ranges. The smaller of these two rangers (0.007-0.1 mum) lies in the range of the collagen fibril (0.1 mum) diameter) and is presumably formed by the loss of collagen, whereas the large pore size distribution is evidence of direct microbial alteration of the bone. HgIP has great potential for the characterization of microbial and chemical alteration of bone.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available