4.5 Article

Statistical approaches for probing single-molecule dynamics photon-by-photon

Journal

CHEMICAL PHYSICS
Volume 284, Issue 1-2, Pages 423-437

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0301-0104(02)00672-9

Keywords

-

Ask authors/readers for more resources

The recently developed photon-by-photon approach [H. Yang, X.S. Xie, J. Chem. Phys., 2002 (in press)] for single-molecule fluorescence experiments allows measurements of conformational fluctuation with time resolution on a vast range of time scales. In that method, each photon represents a data point, thereby affording better statistics. Here, we utilize the information carried by each detected photon to better differentiate theoretical models for the underlying dynamical processes - including two- and three-state models, and a diffusive model. We introduce a three-time correlation analysis, which is based on time series analyses, and the Kullback-Liebler distance, which is based on information theory principles [Elements of Information Theory, Wiley, New York, 1991]. The feasibility of and general procedures for applying these methods to single-molecule experiments are examined via computer simulations. (C) 2002 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available