4.6 Article

Role of ceramide in TNF-α-induced impairment of endothelium-dependent vasorelaxation in coronary arteries

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00318.2002

Keywords

tumor necrosis factor; lipids; nitric oxide; free radicals

Funding

  1. NHLBI NIH HHS [HL 57244] Funding Source: Medline
  2. NIDDK NIH HHS [DK 54927] Funding Source: Medline

Ask authors/readers for more resources

The present study tested the hypothesis that ceramide, a sphingomylinase metabolite, serves as an second messenger for tumor necrosis factor-alpha (TNF-alpha) to stimulate superoxide production, thereby decreasing endothelium-dependent vasorelaxation in coronary arteries. In isolated bovine small coronary arteries, TNF-alpha (1 ng/ml) markedly attenuated vasodilator responses to bradykinin and A-23187. In the presence of N-G-nitro-L-arginine methyl ester, TNF-alpha produced no further inhibition on the vasorelaxation induced by these vasodilators. With the use of 4,5-diaminofluorescein diacetate fluorescence imaging analysis, bradykinin was found to increase nitric oxide (NO) concentrations in the endothelium of isolated bovine small coronary arteries, which was inhibited by TNF-alpha. Pretreatment of the arteries with desipramine (10 muM), an inhibitor of acidic sphingomyelinase, tiron (1 mM), a superoxide scavenger, and polyethylene glycol-superoxide dismutase (100 U/ml) largely restored the inhibitory effect of TNF-alpha on bradykinin- and A-23187-induced vasorelaxation. In addition, TNF-alpha activated acidic sphingomyelinase and increased ceramide levels in coronary endothelial cells. We conclude that TNF-alpha inhibits NO-mediated endothelium-dependent vasorelaxation in small coronary arteries via sphingomyelinase activation and consequent superoxide production in endothelial cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available