4.4 Article

Identification and characterization of two unusual cGMP-stimulated phoshodiesterases in Dictyostelium

Journal

MOLECULAR BIOLOGY OF THE CELL
Volume 13, Issue 11, Pages 3878-3889

Publisher

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.E02-05-0302

Keywords

-

Categories

Ask authors/readers for more resources

Recently, we recognized two genes, gbpA and gbpB, encoding putative cGMP-binding proteins with a Zn2+-hydrolase domain and two cyclic nucleotide binding domains. The Zn2+-hydrolase domains belong to the superfamily of beta-lactamases, also harboring a small family of class II phosphodiesterases from bacteria and lower eukaryotes. Gene inactivation and overexpression studies demonstrate that gbpA encodes the cGMP-stimulated cGMP-phosphodiesterase that was characterized biochemically previously and was shown to be involved in chemotaxis. cAMP neither activates nor is a substrate of GbpA. The gbpB gene is expressed mainly in the multicellular stage and seems to encode a dual specificity phosphodiesterase with preference for cAMP. The enzyme hydrolyses cAMP similar to9-fold faster than cGMP and is activated by cAMP and cGMP with a K-A value of similar to0.7 and 2.3 muM, respectively. Cells with a deletion of the gbpB gene have increased basal and receptor stimulated cAMP levels and are sporogeneous. We propose that GbpA and GbpB hydrolyze the substrate in the Zn2+-hydrolase domain, whereas the cyclic nucleotide binding domains mediate activation. The human cGMP-stimulated cAMP/cGMP phosphodiesterase has similar biochemical properties, but a completely different topology: hydrolysis takes place by a class I catalytic domain and GAF domains mediate cGMP activation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available