4.5 Article Proceedings Paper

Metal complexing agents as therapies for Alzheimer's disease

Journal

NEUROBIOLOGY OF AGING
Volume 23, Issue 6, Pages 1031-1038

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/S0197-4580(02)00120-3

Keywords

amyloid; Alzheimer's disease; copper; zinc; oxidation; hydrogen peroxide; superoxide dismutase

Ask authors/readers for more resources

Modern research approaches into drug development for Alzheimer's disease (AD) target beta-amyloid (Abeta) accumulation in the brain. The main approaches attempt to prevent Abeta production (secretase inhibitors) or to clear Abeta (vaccine). However, there is now compelling evidence that Abeta does not spontaneously aggregate, but that there is an age-dependent reaction with excess brain metal (copper, iron and zinc), which induces the protein to precipitate into metal-enriched masses (plaques). The abnormal combination of Abeta with Cu or Fe induces the production of hydrogen peroxide, which may mediate the conspicuous oxidative damage to the brain in AD. We have developed metal-binding compounds that inhibit the in vitro generation of hydrogen peroxide by Abeta, as well as reverse the aggregation of the peptide in vitro and from human brain post-mortem specimens. Most recently, one of the compounds, clioquinol (CQ; a USP antibiotic) was given orally for 9 weeks to amyloid-bearing transgenic mice, and succeeded in markedly inhibiting Abeta accumulation. On the basis of these results, CQ is being tested in clinical trials. (C) 2002 Elsevier Science Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available