4.7 Review

Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death

Journal

CIRCULATION RESEARCH
Volume 91, Issue 9, Pages 776-781

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.RES.0000038488.38975.1A

Keywords

heart; hypertrophy; failure; signaling; mmitogen-activated protein kinase

Funding

  1. NHLBI NIH HHS [HL10336] Funding Source: Medline

Ask authors/readers for more resources

In response to pathophysiological stress, the adult heart undergoes hypertrophic enlargement characterized by an increase in the cross-sectional area of individual myofibers. Although cardiac hypertrophy is initially a compensatory response, sustained hypertrophy is a leading predictor for the development of heart failure. At the molecular level, disease-related stimuli invoke endocrine, paracrine, and autocrine regulatory circuits, which directly influence cardiomyocyte hypertrophy, in part, through membrane bound G protein-coupled receptors and receptor tyrosine kinases. These membrane receptors activate intermediate signal transduction pathways within the cytoplasm such as mitogen-activated protein kinases (MAPKs), protein kinase C (PKC), and calcineurin, which directly modify transcriptional regulatory factors promoting alterations in cardiac gene expression. This review will weigh an increasing body of literature implicating the intermediate signaling pathway consisting of MEK1 and extracellular signal-regulated kinases (ERK1/2) as important regulators of cardiac hypertrophy and myocyte survival. The MEK1-ERK1/2 pathway likely occupies a central regulatory position in the signaling hierarchy of a cardiac myocyte given its unique ability to respond to virtually every characterized hypertrophic agonist and stress stimuli examined to date and based on its ability to promote myocyte growth in vitro and in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available