4.7 Article

The functions of cell wall polysaccharides in composition and architecture revealed through mutations

Journal

PLANT AND SOIL
Volume 247, Issue 1, Pages 71-80

Publisher

SPRINGER
DOI: 10.1023/A:1021115300942

Keywords

Arabidopsis; cellulose; cell wall; FTIR spectroscopy; mutants; pectins

Ask authors/readers for more resources

The plant cell wall is a highly organized composite of many different polysaccharides, proteins and aromatic substances. These complex matrices define the shape of each individual cell, and ultimately, they are the determinants of plant morphology. The fine structures of the major angiosperm cell wall polysaccharides have been characterized, but it is not well understood how these polysaccharides are assembled into a metabolically active architecture. Cell wall biogenesis and remodeling may be partitioned into six major stages of development (precursor synthesis, polymerization, secretion, assembly, rearrangement and disassembly), and to date, a handful of mutations have been identified that affect the composition and structure in each of these stages. To greatly augment this collection, we have initiated a program to use Fourier transform infrared spectroscopy as a high through-put screen to identify a broad range of cell-wall mutants of Arabidopsis and maize. We anticipate that such mutants will be useful to probe the impact of the individual components and their metabolism on basic processes of plant growth and development. The structures of dicot and grass walls, the identification of representative cell wall mutants, and the use of a novel spectroscopic screen to identify many more cell wall mutants, are briefly reviewed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available