4.5 Article

Dunite distribution in the Oman ophiolite: Implications for melt flux through porous dunite conduits

Journal

GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS
Volume 3, Issue -, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2001GC000289

Keywords

dunites; melt migration/extraction; Oman ophiolite; mid-ocean ridges; 3035 marine geology and geophysics : midocean ridge processes; 3250 mathematical geophysics : fractals; and multifractals; 5114 physical properties of rocks : permeability and porosity; 8434 volcanology : magma migration

Ask authors/readers for more resources

[1] Dunites in the mantle section of the Oman ophiolite represent conduits for chemically isolated melt transport through the shallow mantle beneath oceanic spreading centers. These dunite melt conduits exhibit a scale-invariant power law relationship between width and cumulative abundance, as measured over 4 orders of magnitude. We use this size/frequency distribution to assess several hypotheses for dunite formation and estimate the total melt flux that a dunite network can accommodate beneath an oceanic spreading center. Dunites, measured from one-dimensional lithologic sections and digital image mosaics at a variety of length scales, range in width from similar to3 mm to similar to100 m and follow a power law with a slope of similar to1.1. Extrapolation of the power law predicts that dunites as wide as 3.5 km may exist in the melting region beneath a mid-ocean ridge. Alternatively, perhaps the widest dunites we observe ( 100 m) represent a maximum size. Modeling of dunites as diffusive reaction zones around melt-filled hydrofractures cannot explain the existence of dunites wider than similar to10 m in Oman. Instead, dunites may represent high porosity conduits formed by reactive porous flow. Using the observed size/frequency relationship, the assumption that dunites form a coalescing network and the requirement that flux is conserved where dunites merge, we estimate the total flux through a porous dunite network and the fraction of that flux that remains chemically isolated. Our flux model predicts that the porosity in a dunite scales with the width. For maximum porosities of similar to1-4% in the widest dunites, a network of porous dunite conduits with the abundances observed in Oman can supply a sufficient flux of melt (of which >95% remains chemically unequilibrated with shallow residual peridotites) to satisfy the observed mid-ocean ridge flux.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available