4.5 Article

Alterations in septohippocampal cholinergic neurons resulting from interleukin-2 gene knockout

Journal

BRAIN RESEARCH
Volume 955, Issue 1-2, Pages 16-23

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0006-8993(02)03295-X

Keywords

septohippocampal cholinergic neurons; interleukin-2 gene knockout; brain development; neurodegeneration; autoimmunity

Categories

Funding

  1. NINDS NIH HHS [R01 NS38179, R01 NS42216] Funding Source: Medline

Ask authors/readers for more resources

Interleukin-2 (IL-2) has potent effects on acetylcholine (ACh) release from septohippocampal cholinergic neurons and trophic effects on fetal septal and hippocampal neuronal cultures. Previous work from our lab showed that the absence of endogenous IL-2 leads to impaired hippocampal neurodevelopment and related behaviors. We sought to extend this work by testing the hypotheses that the loss of IL-2 would result in reductions in cholinergic septohippocampal neuron cell number and the density of cholinergic axons found in the hippocampus of IL-2 knockout mice. Stereological cell counting and imaging techniques were used to compare C57BL/6-IL-2(-/-) knockout and C57BL/6-IL-2(+/+) wild-type mice for differences in choline acetyltransferase (ChAT)-positive somata in the medial septum and vertical limb of the diagonal band of Broca (MS/vDB) and acetylcholine esterase (AChE)-labeled cholinergic axons in hippocampal projection fields. IL-2 knockout mice had significantly lower numbers (26%) of MS/vDB ChAT-positive cell bodies than wild-type mice; however, there were no differences in striatal ChAT-positive neurons. Although AChE-positive axon density in CA1, CA3b, the internal, and external blades of the dentate gyrus did not differ between the knockout and wild-type mice, the distance across the granular cell layer of the external blade of the dentate gyrus was reduced significantly in IL-2 knockout mice. Further research is needed to determine whether these outcomes in IL-2 knockout mice may be due to the absence of central and/or peripheral IL-2 during brain development or neurodegeneration secondary to autoimmunity. (C) 2002 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available