4.6 Article

Spatial redox regulation of a critical cysteine residue of NF-κB in vivo

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 46, Pages 44548-44556

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M202970200

Keywords

-

Ask authors/readers for more resources

Reduction-oxidation (redox) regulation has been implicated in the activation of the transcription factor NF-kappaB. However, the significance and mechanism of the redox regulation remain elusive, mainly due to the technical limitations caused by rapid proton transfer in redox reactions and by the presence of many redox molecules within cells. Here we establish versatile methods for measuring redox states of proteins and their individual cysteine residues in vitro and in vivo, involving thiol-modifying reagents and LC-MS analysis. Using these methods, we demonstrate that the redox state of NF-kappaB is spatially regulated by its subcellular localization. While the p65 subunit and most cysteine residues of the p50 subunit are reduced similarly in the cytoplasm and in the nucleus, Cys-62 of p50 is highly oxidized in the cytoplasm and strongly reduced in the nucleus. The reduced form of Cys-62 is essential for the DNA binding activity of NF-kappaB Several lines of evidence suggest that the redox factor Ref-1 is involved in Cys-62 reduction in the nucleus. We propose that the Ref-1-dependent reduction of p50 in the nucleus is a necessary step for NF-kappaB activation. This study also provides the first example of a drug that inhibits the redox reaction between two specific proteins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available