4.7 Article

Electrokinetic characterization of porous plugs from streaming potential coupled with electrical resistance measurements

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 255, Issue 2, Pages 323-331

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/jcis.2002.8591

Keywords

streaming potential; electrical resistance; pore conductivity; zeta potential; surface conduction; porous plug

Ask authors/readers for more resources

The zeta potential of mixed nickel-iron oxide particles is evaluated by a new laboratory instrument. This latter allows the measurement of streaming potential together with the electrical resistance of porous plugs. The conductivity of electrolyte inside plug (pore conductivity) is deduced from electrical resistance measurements and is used together with streaming potential to evaluate the zeta potential by accounting for the surface conduction phenomenon. It is shown that neglecting the surface conduction phenomenon leads to a substantial underestimation of the zeta potential. The coupled measurements of streaming potential and plug electrical resistance yield zeta potential values that are in very good agreement with those obtained by electrophoresis. The densification of the porous plug with increasing pressure increments is put in evidence by the decrease in measured streaming potentials. Electrical resistance measurements make it possible to account for the increase in surface conductivity resulting from the more compacted structure of the plug. By doing so, the calculated zeta potential is found to be virtually independent of the pressure difference involved in streaming potential experiments, whereas the negligence of surface conduction phenomenon leads to a decrease in the apparent zeta potential with increasing pressure level. (C) 2002 Elsevier Science (USA).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available