4.8 Article

Synthesis and properties of 1,3,5-benzene periodic mesoporous organosilica (PMO): Novel aromatic PMO with three point attachments and unique thermal transformations

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 124, Issue 46, Pages 13886-13895

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja027877d

Keywords

-

Ask authors/readers for more resources

A new aromatic periodic mesoporous organosilica material containing benzene functional groups that are symmetrically integrated with three silicon atoms in an organosilica mesoporous framework is reported. The material has a high surface area, well-ordered mesoporous structure and thermally stable framework aromatic groups. The functional aromatic moieties were observed to undergo sequential thermal transformation from a three to two and then to a one point attachment within the framework upon continuous thermolysis under air before eventually being converted to periodic mesoporous silica devoid of aromatic groups at high temperatures and longer pyrolysis times. The mesoporosity of the material was characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), and nitrogen porosimetry, whereas the presence and transformation of the aromatic groups in the walls of the materials were characterized by solid-state NMR spectroscopy, mass spectrometry, and thermogravinnetric analysis. The attachment of a benzene ring symmetrically onto three siloxanes of the framework was used advantageously as a cross-linker to enhance the thermal stability of the organic group. Some of these properties are investigated in comparison with other aromatic PMOs that have only two point attachments and an amorphous phenylsilica gel that has only one point attachment. The successful synthesis of the first aromatic PIVIO with its organic group attached within the framework through more than two points is an important step toward the synthesis of PMOs having organic groups with more complex and multiple attachments within the framework.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available