4.8 Article

Confinement of acoustical vibrations in a semiconductor planar phonon cavity

Journal

PHYSICAL REVIEW LETTERS
Volume 89, Issue 22, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.89.227402

Keywords

-

Ask authors/readers for more resources

Extending the idea of optical microcavities to sound waves, we propose a phonon cavity consisting of two semiconductor superlattices enclosing a spacer layer. We show that acoustical phonons can be confined in such layered structures when the spacer thickness is an integer multiple of the acoustic half-wavelength at the center of one of the superlattice folded minigaps. We report Raman scattering experiments that, taking profit of an optical microcavity geometry, demonstrate unambiguously the observation of a phonon-cavity confined acoustical vibration in a GaAs/AlAs based structure. The experimental results compare precisely with photoelastic model calculations of the Raman spectra.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available